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Abstract

We compare first-principles (FP) calculations of the ionic effective charges, phonon frequencies, and

static dielectric permittivities κs of several perovskite-type materials. Transition metal ions have

anomalously large effective charges, though in the double perovskite CaAl1/2Nb1/2O3 (CAN), the

effective charge of Nb is significantly lower than in the simple perovskite KNbO3, showing different

Nb-O bonding chemistry. Tolerance factors, cation chemistry, and structural phase transitions all

affect the nature of the softest phonons in perovskites. For the solid solution (CaAl1/2Nb1/2O3)1−x-

(CaTiO3)x (CAN-CT), κs is modeled via a cluster expansion, with the parameters determined

from FP. In pure CAN, κs is found to increase when cation disorder increases, in agreement

with experimental results on analogous systems. The dielectric constant of CAN-CT increases

nonlinearly with x, in agreement with experiment.
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I. INTRODUCTION

Dielectric materials for microwave applications must have high permittivity, low loss,

and temperature stability. Uncovering the relationship between structure, chemistry, and

dielectric properties is important for the eventual rational design of new dielectric materials.

Dispersion theory[1–3] provides a bridge between the crystal structure and chemistry

and the dielectric properties. The static dielectric constant of a ceramic, κs, taken as the

directional average of the dielectric tensor, is

κs = κ∞ +
∑
µ

κµ, (1)

where κ∞ is the directional average of the electronic dielectric tensor and κµ is the oscillator

strength of mode µ. κµ, in turn is given by (SI units):

κµ =
∑
αiγjδ

Z?
iαγZ

?
jαδ(aµ)iγ(aµ)jδ

12π2m
1/2
i m

1/2
j V ε0ν2

µ

, (2)

where i and j label ions,
↔
Z?
i is the Born effective charge tensor for ion i, νµ is the frequency

for mode µ, and aµ is the normalized dynamical matrix eigenvector for mode µ. The number

of modes in Eq. (1) is determined by the crystal structure, whereas the values of
↔
Z?
i , aµ and

νµ in Eq. (2) are determined by the crystal chemistry.

Ordered perovskite-type materials typically have around 20 atoms per unit cell. The

quantities
↔
Z?
i and aµ are difficult to determine experimentally for such systems. First prin-

ciples (FP) calculations are ideally suited for studying periodic systems of this size and

furthermore allow all of the quantities in Eqs. (1)-(2) to be determined.

The frequency dependent dielectric constant is given by complex κ(ν) = κ′(ν) + iκ′′(ν).

In materials of interest for microwave applications, however, κ′ does not vary significantly

between zero frequency and microwave frequencies. In this work, we neglect dielectric loss

and frequency dependence of κ′ and focus on κs as given by Eqs. (1)-(2).

To better understand structure-dielectric property relationships in microwave dielectric

materials, we review in this work FP studies of the phonon and dielectric properties of simple

perovskite-type materials, and extend FP studies to larger systems via a cluster expansion

method.
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II. METHODS

In order to compute κs, one must compute κ∞, νµ, aµ, and
↔
Z?
i . All of these quantities

can be calculate from density functional theory. The phonon frequencies and eigenvectors

come from the dynamical matrix, which is determined by the force constant matrix Fiαjβ.

Two different approaches exist for computing κ∞,
↔
Z?
i , and Fiαjβ, all of which are response

quantities. The first is finite difference methods[3]. Finite difference methods have the ad-

vantage of easy implementation. The second is linear response, based on density functional

perturbation theory[4–6]. This approach, though more difficult to implement, has the ad-

vantage of allowing perturbations of wavelength larger than the unit cell of the system to

be studied.

For full details on the FP calculations reported in this work, refer to the original articles

cited in the tables. For the results presented here that are not otherwise cited, the den-

sity functional theory package VASP was used[7–10], in conjunction with finite difference

methods[3, 11]. VASP uses a plane wave basis set for the electronic wavefunctions, and

ultrasoft Vanderbilt-type pseudopotentials[12] for the ions, as supplied by G. Kresse and J.

Hafner[13]. We included semicore electrons for all metal ions. The plane-wave energy cutoff

was 457.4 eV. The local density approximation (LDA) was used for the exchange-correlation

energy. Brillouin zone integration was obtained by calculating Kohn-Sham wavefunctions

for a grid equivalent to an 8× 8× 8 Monkhorst-Pack grid for a primitive perovskite cell.

III. RESULTS

A Perovskites with small unit cells

Results for the effective charges, phonon properties, and dielectric properties for several

perovskite systems of microwave interest are given in Tables I-III, along with results for

some other perovskites. In order to simplify presentation and comparison, the Born effective

charge tensors were reduced as follows:

Z?
s = ±

( 1

3Ns

∑
i∈s

∑
αβ

(Z?
iαβ)2

)1/2
, (3)
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for species s, where the + sign is for cations and the − sign for anions. Oxygen ions have

highly anisotropic Born effective charge tensors, thus we define the effective charge of O in

the direction of the B cation, Z?
O,‖, and the effective charge of O transverse to the B cation,

Z?
O,⊥, as follows:

Z?
O,‖ = −

( 1

NO

∑
α

∑
i∈Oα

∑
β

(Z?
iαβ)2

)1/2
(4)

and

Z?
O,⊥ = −

(3

2
Z?
O −

1

2
Z?
O,‖

)
, (5)

where Oα is an oxygen ion whose nearest neighbor B cations are in the ±α̂ Cartesian

directions. In the case where the perovskite is simple with Pm3m symmetry, or double with

Fm3m symmetry, the
↔
Z?
i are diagonal and the components listed in Table I are exactly the

diagonal components of
↔
Z?
i .

For a cubic ABO3 perovskite, there are three polar phonon triplets: a Last mode (A

vibrates against B and O) a Slater mode (B vibrates against O), and an “O6 bending”

mode (O‖ vibrates against O⊥), Some mixing among these modes may occur. For a cubic

double perovskite AB1/2B′1/2O3, a fourth polar triplet exists where B and B′ vibrate against

each other. When the cubic symmetry is broken, however, through ferroelectric distortion

or octahedral tilting, the number of distinct polar modes typically increases. To facilitate

comparison, results for distorted perovskites are grouped into the appropriate number of

pseudotriplets, as discussed in Ref. [11].

Since the first-principles results for κs are based on FP ground state structures, it is

appropriate to compare them with experiments at low temperature. The computed κs for

CaTiO3 agrees well with the experimental results at 4 K (Ref. [14]). Assuming that τf

for CaAl1/2Nb1/2O3 is temperature-independent, it can be inferred from Ref. [24] that its

κs is about 24.5 at T = 0, in excellent agreement with the computed value. BaTiO3 is

ferroelectric and has strong temperature dependence of κs down to low temperatures[15],

making comparison with experiment difficult.
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B Disordered perovskites and Solid Solutions

It is not possible to compute the dielectric properties of disordered solids, partially ordered

solids, or solid solutions directly from FP at present, because any periodic cell large enough

to be representative of the disorder will be too computationally expensive. Many systems

of microwave interest, however, are based on solid solutions. In particular, if a complete

solid solution series exists between a material with positive τf and one with negative τf then

it contains one or more compositions where τf = 0. For example, (CaAl1/2Nb1/2O3)1−x-

(CaTiO3)x (CAN-CT) has τf = −88 µK−1 at x = 0, τf = +712 µK−1 at x = 1 and τf = 0

at x ≈ 0.5 [24].

Large supercells of CAN-CT were studied using cluster expansion methods. The cation

species at site i was given the spinlike variable σi, with values −1, 0, and 1 corresponding

to Al, Ti, and Nb, respectively. The total energy was expanded in the usual manner

E = E0 +
∑
i

2∑
n=1

E1nσ
n
i +

∑
i,R

2∑
m,n=1

E2Rmnσ
m
i σ

n
i+R + . . . . (6)

The Born effective charges were likewise expanded:

Z?
iαβ = Z?

iαβ0 +
∑
j

2∑
n=1

Z?
iαβ1jnσ

n
j +

∑
jk

2∑
m,n=1

Z?
iαβ2jkmnσ

m
j σ

n
k + . . . (7)

The force constant matrix and κ∞ were expanded in a similar fashion.

Each symmetry-independent 20-atom ordered unit cell of CAN-CT was studied in detail

to determine the total energy, κ∞, Fij, and
↔
Z?
i . The results were then fit to Eqs. (6), etc.

Only single-ion and pair terms of short distance were included in the cluster expansion. The

number of terms kept in each fit was that necessary and sufficient to reproduce the results

for the ordered cells. For simplicity, the force constants were not separated into short-range

interactions and long-range dipole-dipole interactions in a self-consistent manner.[19].

Eqns. (1)-(2), with the parameters determined by the expansions (7), etc., can then be

used to compute κs for any charge-neutral cation configuration (
∑
σi = 0). The effect of

cation ordering in CAN can be investigated as a special case of the full CAN-CT model

with σi constrained to be +1 or -1. We simulated the order-disorder transition in CAN-CT

by simulated sintering of 360-atom supercells at various temperatures, using a Metropolis
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algorithm and Eq. (6) as the Hamiltonian. The order-disorder transition temperature was

determined. For each given sintering temperature, various realizations of typical cation

ordering were creating by “quenching” the instantaneous cation order at various times in

the simulation. The average κs of these realizations were then computed.

The results are shown in Figure 1. The predicted dielectric constant increases as the

simulated sintering temperature (and thus disorder) increases. Although no direct results for

pure CAN are available, similar results are observed experimentally for analogous systems:

when both ordered and disordered samples of the same composition are prepared, it is

generally found that the disordered samples have κs about 10 % to 20 % greater than the

ordered ones[20–22]

Simulations of CAN-CT as a function of x with fixed simulated sintering temperature

slightly below the order-disorder transition temperature of CAN show a strong, nonlinear

composition dependence of κs, in agreement with experiment[24] (see Figure 2).

IV. DISCUSSION

In all perovskites studied, the effective charges Z? are anomalously large, especially Z?
B

and Z?
O,‖. Large Z?’s lead to large κs via Eq. (2). In simple perovskites, the same species

s tends to have the same Z?
s in different compounds (compare the titanates in Table I).

However, two known processes can change Z?
s significantly: (1) ferroelectric (FE) transitions

(as in BaTiO3 (BT) and KNbO3 (KN)); (2) the inclusion of a second species on the perovskite

B sublattice (such as occurs in CAN). Both processes lower the effective charges of the

transition metal ion (Nb or Ti). Changes in Z?
B and Z?

O,‖ reflect changes in the character

of B-O bonding. Since Z?
Nb is different in KN and CAN despite the fact that the Nb-O

distances are very similar, one must conclude that B-O bonding in a perovskite depends

strongly on the identity of cations on the surrounding B sites.

The large B and O‖ effective charges in perovskites enhance the contribution of the

Slater mode to the dielectric constant because B and O move against each other. In the

ferroelectrics BT and KN, the softest mode in the cubic phase is Slater-like; however it
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is unstable; the frequency associated with this mode is very temperature dependent, and

thus the dielectric constant is strongly temperature-dependent (becoming very large at the

FE transition temperatures). In the ground state of both systems, the two lowest modes

are reversed. CT has remarkably different behavior (see Table II). The lowest frequency

phonons of the cubic phase are Last-like (though strong mixing with a Slater-like mode

occurs). There is a polar instability, but no ferroelectric transition occurs in CT: instead

octahedral tilting transitions occur[23]. At low temperature, mode reversal of the other kind

takes place: the Slater-like mode has the lowest frequency. In CAN, the Last-like mode is

the lowest at all temperatures.

The differences between the lowest-frequency modes of the cubic phases are reasonable

in light of the differences in tolerance factors. For BT and KN t > 1, and thus the B cations

are “too small”, and a Slater-type instability should exist. For CT and CAN, t < 1, and the

A cations are “too small”, therefore a Last-like instability should exist (although as noted,

octahedral tilting transitions occur instead). The difference between CT and CAN in their

low-temperature phases is more remarkable, and must be correlated with differences in the

B-site chemistry.

V. CONCLUSIONS

First-principles computations have been used to compute the effective charges, phonon

properties, and static dielectric constant κs of several perovskite-type compounds. The com-

puted values for κs agree well with experiment. Differences between perovskites are related

both to tolerance factor and to B site chemistry. A cluster expansion method was used to

study κs in (CaAl1/2Nb1/2O3)1−x- (CaTiO3)x as a function of composition and ordering. In

CAN, κs was found to increase with disorder, and in CAN-CT, κs increased in a nonlinear

manner with x, in agreement with experiment.
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TABLE I: Comparative Born effective charges for different perovskites, as determined from

first principles. When different crystal systems are given for the same compound, they

represent “high” temperature and lowest temperature phases.

Compound crystal system Z?A Z?B (Z?B′) Z?O,‖ Z?O,⊥ Ref.

CaTiO3 C 2.57 7.20 −5.69 −2.04 [3]

CaTiO3 O 2.42 6.96 −5.38 −1.97 [3]

SrTiO3 C 2.54 7.12 −5.66 −2.00 [16]

BaTiO3 C 2.74 7.29 −5.75 −2.13 [2,17]

BaTiO3 R 2.77 6.25 −5.05 −1.98 [2,17]

PbTiO3 C 3.90 7.06 −5.83 −2.56 [16]

PbTiO3 T ≈ 3.92 ≈ 6.71 ≈ −5.51 ≈ −2.56 [16]

BaZrO3 C 2.73 6.03 −4.74 −2.01 [16]

KNbO3 C 1.12 9.67 −7.28 −1.74 [18]

KNbO3 R 1.15 8.18 ≈ −6.28 ≈ −1.55 [18]

CaAl1/2Nb1/2O3 C 2.59 3.97 6.37 −3.84 −1.96 this work

CaAl1/2Nb1/2O3 M 2.45 4.01 6.25 −3.75 −1.94 [11]
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TABLE II: Comparative phonon frequencies (in cm−1) for different perovskites, as deter-

mined from first principles. Compound names and crystal system are abbreviated from

Table I. For non-cubic systems, distinct frequencies are averaged into pseudotriplet frequen-

cies. Imaginary frequency indicates instability. Modes are labelled as follows: ν1: most

similar to pure Last mode; ν2: most similar to pure Slater mode; ν3: O6 bending; ν4: B vs.

B′.

Compound/ ν1 ν2 ν3 (ν4) Ref.

system

CT/C 140 i 200 625 [3]

CT/O 217 98 509 [3]

BT/C 166 219 i 453 [2]

BT/R 163 220 474 [2]

KN/C 170 197 i 473 [18]

KN/R 172 216 534 [18]

CAN/C 48 i 304 733 487 [11]

CAN/M 194 302 613 425 [11]
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TABLE III: Comparative κ∞ and (pseudo)triplet contributions to κs for different per-

ovskites, as determined from first principles. Experimental κs given, where known. Modes

are ordered as in Table II.

Compund/system κ∞ κ1 κ2 κ3 (κ4) κs (κs)expt (T )

CT/O 6.1 7.2 260.0 1.4 274.7 [3] 331 (4 K) [14]

BT/R 5.1 15.7 35.6 0.6 57.0 [2]

CAN/M 4.9 10.0 7.6 1.0 1.7 24.9 [11] 25.5 (298 K) [24]
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FIG. 1: Dielectric constant at T = 0 K vs. simulated sintering temperature in model for

CaAl1/2Nb1/2O3.
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FIG. 2: Dielectric constant vs. composition x in model for (CaAl1/2Nb1/2O3)1−x- (CaTiO3)x.
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